National Journal on Electronic Sciences and Systems, Vol.1, No.1, March 2010 41

QUANTITATIVE ANALYSIS OF 64-BIT FLOATING POINT ARITHMETIC HARDWARE

INTERPRETER ON FPGA BASED CUSTOM COMPUTING MACHINES

Renukadevi.S', Rajasekaran.S’
'Research Scholar, Mother Teresa Women's University, Kodaikanal, India.
?B.S.Abdur Rahman University, Chennai, India.
Email: 'srajayaganesh@yahoo.com.sg

Abstract

Analog and mixed signal circuit simulation often employs the use of the so called LU decomposition method to solve a set of
linear algebraic equations represented as Ax=b, where Ais a square matrix. The LU method requires the factorization of Ainto
two tri-diagonal matrices. Factorization is O(n3) time and dominates the execution time of the LU decomposition method. A
number of approaches have been developed for reducing the execution time of LU factorization. One approach is to unroll the
factorization algorithm and considering each resulting assignment statement to be a machine operation, interpret the
instruction stream. If an interpreter is implemented in a special purpose hardware engine there may be efficiencies to be gained
by using a uniquely developed floating point unit within the hardware interpreter. This paper documents the research in
exploring alternatives in the design of a special purpose double precision floating point unit for a hardware interpreter to perform
LU factorization using unrolled code. Alternatives explored were primarily looking at integer adder and multiplier units of the
floating point unit to determine the speed and area for each integer unit that was considered. Afloating point divider algorithm
was also explored and studied. The result of this paper for the pipelined floating point unit gives the best performance with the
Block Carry look-ahead integer adder, Booth-2 integer multiplier and the SRT integer divider units. One of the interesting
aspects of this research was heavy use of rapid prototyping all models were implemented in Verilog to evaluate system level
performance.

Keywords: IEEE-754, Floating point Unit, 64-bit FPU.

I. INTRODUCTION

The problem known as system of simultaneous linear
algebraic equations with n unknown is one of the general
topics in linear algebra. It may be written in terms of
matrix operations such as Ax=b, where A is a matrix of
sizen*nand X and b are vectors each of size n. Once the
mapping of A and the vector b are known there is this
problem whether and when there exist a proper x obeying
equation (1) and how to derive it. In particular, the LU
decomposition method is used for solving such a system
of linearequation. Matrix Ais factorized as A=LU where
L is the lower triangular matrix and U is the upper
triangular matrix. After the two factors of the matrix L and
U are calculated they are used to find the vector x by
forward and backward substitution methods. Equation
(1) which constitutes a system of linear equations are
used in analog and mixed signal circuits. Generally, as
the size of the matrix increases the time taken to simulate
it also increases which leads to the need to reduce the
time required to solve the set of linear equations.

The objective of this paper is to duty a FPGA based
floating point method to be used in a hardware
interpreter.

a, a, ag a, X b,
a21 a22 a33 a2n X2 b2
an1 an2 anS ann Xn bn

The interpreter which takes in a stream of variable
length instructions representing the symbolic unrolled
instructions in the LU factorization algorithm [26].The
output of the interpreter is the sparse L and U factors
where the matrix values are in IEEE-754 double
precision format. The hardware model consists of a
control unit and a floating point unit which produces one
matrix element every cycle [25]. Since the area
consumed by floating point execution units on FPGA is
well known to be very large, several approaches to
reduce the area and execution time of the FPU are
investigated. ~ The controller inputs and decodes
instructions, controls data flow to and from the floating
point unit and output data to the LU memory [25]. Thus
the execution rate of the FPU is primarily determined by
the speed and rate of data provided by the controller to
the FPU and the rate of data that can be received by the
controller fromthe FPU.

42 National Journal on Electronic Sciences and Systems, Vol.1, No.1, March 2010

Hardware interpreter

The hardware interpreter is a dedicated hardware
engine as shown in fig.1, to generate the L and U factors
from the instruction stream given by the preprocessor
[26]. An unrolled LU factorization code for a given sparse
matrix is given in an encoded form to the control unit. The
control unit [25] of the hardware interpreter then decodes
the instructions and the memory which form the integral
part of the hardware interpreter

Controller Commands

Controller Unit e e e FPU

A

Address i i Data 'O
|

T

I

:

)

Y Y
Data IO

L i s it i i i i e URIROTY

Fig. 1. Block Diagram of the Hardware Interpreter

The control unit gives two 64-bit input operands to the
FPU core which are of IEEE-754 format. The FPU writes
back the output matrix element, which is of 64-bits, to the
memory. The memory exchanges data 1/0 with the
control unitand the FPU core.

IIl. ARCHITECTURE OF THE FLOATING POINT UNIT

During every clock cycle, two 64-bit operands are
given either to the divider or to the multiply-add unit. Note
thatin fig.2, the output of the divider is one of the inputs to
the multiplier and the output of the multiplier is one of the
inputs to the subtracter. There are temporary registers
which are the supporting elements of the FPU core that
act as a buffer. Temporary1 register stores the output of
the divider (temp1 register), temp2 register stores the
input to the FP multiplier and the latency of the FPU core
elements.

Each operation consists of four parts: tag, opcode,
operand and the address. The tag (set of binary numbers
whose length depends on the number of operations) is
the same for a set of divider and multiply-add operations,
hence it helps to connect the multiply —add to the
performed and accordingly the inputs are sent to the
corresponding FPU core. Signals Complete and done
indicate the completion of the operation by the divider and
the multiply-add units respectively. There are two outputs

from the FPU i.e. the output from the divider and the
multiply-add unit which constitute the matrix elements.
The control unit recognizes these signals and writes-back
the output to the memory [25].

The memory used in this paper is single-ported in
nature that means it can handle either a read or a write
every cycle. The study of different kinds of memory which
can handle more than one output of the FPU and also
provide input to the FPU at the same time is a totally
different research problem and has been handled in this
paper.

Design ofthe data path

The data path consists of a FPU core and supporting
elements. Each core element is pipelined to increase its
throughput. In this study, initially, the numbers of pipeline
stages were equal to the number of tasks for each core
element algorithm. The number of stages was modified if
needed to improve the performance or area. During the
study, the initial fully partitioned staged circuits were
examined to identify where stages could be combined
with a corresponding increase in execution speed or
reduced circuitarea.

The linear pipeline which is a cascade of processing
stages each consisting of the combinational circuit that
performs the arithmetic operations on the data flowing
through the pipe. Stages are separated by high speed
interface latches that are fast registers to hold the
intermediate results. The pipe is under the control of a
common clock. Once a linear pipelining is filled up, it
produces one result per clock cycle, independent of the
number of stages it contains. The whole design has been
implemented in Verilog HDL. The data and control flow of
the interpreteris shown infig.2.

lll. IMPLEMENTATION USING VERILOG

Verilog can be used to represent several different
abstraction levels [2]. The level chosen to represent the
64-bit floating-point adder includes a mixture of register-
level and logic-level logic block. To describe the register
transfer level and the data flow through the adder, Verilog
constructs called processes provide the sequential
instruction that manipulate the data. Each process
contains a sensitivity list that triggers the actions within a
process. [14, 16] Provides idea on how to code more
efficiently to use the synthesis tool capabilities.

Renukadevi et al: Quantitative Analysis of 64-bit Floating Point Arithmetic...

43

x—bits 28-bits 1-bat 64-bits 64-bits
—l Tag Address | Opcode Operand 1 Operand 2 :
FPU
__ | Tag
S S————— S— |
Opeode | H] [i
™ _y | Opeode—_ 1 Qi) ' y IN2
e 1 ADDOUT MULTIPLIER N2 4
| address Complete— |__address | ok agiatay | 1a
Tog) [“roasss N1 D=A*C)
A ["TEMPI |----------- R
X ¢ Register ! : T s
i 53 i : N2 ' Done)
' !' !' i Operand 1
| address SUBTRACTOR IN1 ' A
----------- = -~ -----1TEMP3 Registen @ Ld+L_
D=D-F v "

divider output

L, - Latency of the divider,

multiply—add output

Output (64-bit operand and 28-bit address)

L, - Latency of the multiplier, X - Average number of multiply-add operations for

the respective divide operations

Fig. 2. Architecture of the floating point unit

A. Floating-Point Addition

The pipelined design of the 64-bit floating point adder
has a latency of seven clock cycles. Once the pipeline
has been filled, the adder can generate a result each
clock cycle so long as new operands are given every
clock cycle thereafter. The design follows the traditional
algorithm except that the stage has been split into
multiple stages to allow the adder to run at a slightly faster
clock speed. Basically, by having more stages with fewer
logic levels, the pipeline can be run at faster clock
speeds.

The following section describes the algorithm used to
partition the different stages of manipulation and the
Verilog constructs used to synthesize the FPU. The
adder design pipelines the steps to achieve a summation
every clock cycle. Each pipeline stage performs
operations independent of others. Input data to the
adder continuously streams in from the multiplier. The
following sub-sections describe each of the adder
pipeline stages in more detail as showninfig.3.

Stage 1: Unpacking operands

The two sign, exponent and mantissa bits for operand

Aand operand B are latched in registers which are 1-bit,
11-bit, and 52-bit in length. The inputs are checked for
special values like Not a number, Zero and the
appropriate flags are set which is passed on through all
stages.

Stage 2: Calculate Exponent and Sign

The second stage in the adder used comparator logic
to place the larger of the two operands as operand A. The
combinational Verilog process compares the exponents.
If the exponents are equal, the logic then compares the
mantissa values. The comparator is left to the synthesis
tool. Sign bits of the two operands are XOR'ed. Sign bits
do not affect the comparison. The registered process
handles insertion of the implied leading-once for each
new mantissa value. The leading-one insertion operation
always takes place regardless of the operand values.

Stage 3: Shift Mantissa Stage

In order to add two floating-point values in scientific
notation, the two values must have the same exponent in
both sign and magnitude. The adder must perform this
operation by shifting one of the operands and making
adjustments to the operand exponent value. Stage 1of

44 National Journal on Electronic Sciences and Systems, Vol.1, No.1, March 2010

STAGE - | [UNPACK _ OPERANDS]

[Compare both the operands such that EI = E2 and M1 >= M2]

2 Ml M2

\"\I BTRACT ff Exp_diit []

L

[M1 M2

STAGE-3 [1 B] MANTISSA SHIFTER

MI M

FIXED-POINT
ADDER

M_OUT

SAGE-d (R

STAGE-5 [| EXPONENT ADJUST | | NORMALIZER I
s ouT E OUT M_oLUT
STAGE -6] -] ROUNDING LINIT

s ouT E_OUT M_OuT

STAGE-7 [PACK _ OPERANDS]

Fig. 3. Pipeline stages of floating point adder

the opening takes the difference of the two operand
exponents to determine how many shifts are needed on
operand B. By shifting to the right, the operand stands to
lose only lower significant bits. The maximum number of
shifts needed is 53. Even though barrel shifter is simple
in its design, each input bit is directly connected to 53 or
more output lines, which needs large number of
connections. Once alternative is a three-level
combinatorial shifter to shift 53 bits of the mantissa by
having the first-level shift the bits by 0,1,2 or 3 bit
positions, and letting the second-level shift the bits by
multiples of 4 (i.e. 0,4,8,12) and the third-level by 16
(i..0,16,32,48,64). This way, shifts from length 0 to 53
can be performed.

Stage 4: Mantissa Addition Stage

Stage 4 of the adder pipeline performs the addition of
the two mantissa integer values. Note that since
operand A is greater than operand B, a borrow cannot
happened in subtraction, and thus, the carry-out bit of the
resultis cleared. The carry-out bit becomes important in
the next stage of the pipeline which may indicate the
result needs neither further normalization nor exponent
adjustment. If an addition took place with a carry-out, an
immediate adjustment to the exponent must be done
prior to the normalization stage since the bit does not take
part in the 53-bit mantissa result vector. To do so, the
stage must shift the result vector to the right by once to
accommodate the carry-out bit as the new leading-one.
This is the only stage which gives us scope to study
different fixed-point adders to determine which gives the

best performance. The different kinds of integer adder
used for comparative study are Ripple carry adder(RCA),
Carry look -ahead adder(CLA), Carry Select adder(CSA)
and Carry Save adder. All adders are implemented at the
logic-level and the exponent and sign bits are stored in
delay registers. Overflow and underflow are checked and
appropriate flags are set.

Stage 5: Normalization Shift Calculation stage

Stage 5 determines the number of shifts required to
normalize the resulting mantissa value after the addition
takes place. Comparator logicis used here to find the first
leading-one digit from the MSB. A counter maintains the
number of comparisons made which is the equal to the
number of shifts needed. The shift value is used to
normalize the mantissa such that the leading one in the
mantissa resides in the most significant bit location. This
stage also uses the shift value to adjust the exponent to
the number of shifts required. Shifterin this stage is leftto
the synthesis tool. Normalized mantissa, the exponent,
and sign are passed onto the next stage in the pipeline.

Stage 6: Rounding the result

The mantissa after normalization is rounded for
precision and accuracy. This research deals with only
one mode of rounding which adheres to IEEE-754
standard, which is rounding to the nearest, where the
round bit is calculated with the combination of guard (g),
sticky (s) and round(r) bits of the mantissa. If the
combination of the three bits, i.e. 'gsr' is greater than,
whichis'101"in binary, then actual mantissa which is from
0 to 52 bits is increased by one, else if the value of 'gsr' is
lesser than 5 then there is no change to the mantissa. A3-
bit comparator or is used to compare the 'gsr' bits the
resultant mantissa sign and exponent are passed onto the
final stage.

Stage 7: Write the result back to register

Finally sign, exponent and mantissa re concatenated
to form the final result. The special condition flags are
checked and if any of the flags are set high, then the result
various accordingly. The result is stored back in a 64-bit
register and passed as an output from the FPU.

B. Floating-Point Multiplication

The 64-bit FP adder has latency of six clock cycles as
depicted infig. 4. The multiply mantissa stage is a focus of
study in this research. Different fixed-point multipliers
used inthis stage are either non-pipelined or fully
pipelined. Acomparative study of such architecture gives
the tradeoffs between performance and area. The

Renukadevi et al: Quantitative Analysis of 64-bit Floating Point Arithmetic... 45

following section describes the algorithm used to portion
the different stages of and the Verilog construct used.

STAGE-] [UNPACK OPERANDS
] -
El E2 MI M2
STAGE-2 NOR ‘ \(iy
4
o2y B
“II SUBTRACT/
II_
SOUT E_OUT M| M2

STAGE-) | rzrasrzrerz)
EE FIXED-POINT
MULTIPLIER
S ouUT

E_OUT
o mour

STAGE-4 | Forr I EXIONENT AIVUST

s our E OUT

NORMALLZER

STAGE-S []] ROLINDING UNIT

S 0UT E OUT M_ouT

STAGE-6 [PACK OPERANDS |

Fig. 4. Pipeline stages of floating point multiplier

Stages 1, 4 and 6 are done same like adder

Stage 2: Calculate exponent and sign

The exponents of operand Aand operand B are added
together and the result is subtracted from the bias, 1023
which gives the resultant biased exponent. The sign bits
of the two operands are XOR'ed to give the sign bit. The
sign and exponent output are passed on through all
stages.

Stage 3: Multiply mantissa

The mantissa fields of operand A and operand B are
multiplied. The output of the fixed point multiplier is
double the mantissa length. The different kinds of fixed-
point multipliers used for comparative study are shift-add
multiplier, Booth-2 multiplier and Booth-3 multiplier 3.
Both non-pipelined and fully-pipelined fixed-point
multipliers have been studied. Hence the numbers of
pipeline stages vary from 6 for a non-pipelined to 56
stages for a fully-pipelined FP multiplier. The exponent
and sign bits are stored in delay resisters.

Stage 5: Rounding

Rounding of the mantissa is similar to the operation
done in FP adder except that the lower 53 bits of the
mantissa is used for rounding. Using the Verilog
construct the sticky bit which ranges from (0-51) bits of the
mantissa to 1-bit can be reduced. 52nd bit of the output is

the round bit. Accordingly if either the round bit is '1" or
both round bit and sticky bit are '1' then the mantissa is
incremented by '1' else it remains the same.

C. Floating-Point Division

The 64-bit FP divider has a latency of six clock cycles
as depictedinfig.5. Only one fixed point divider has been
studied. The following section describes the algorithm
used to partition the different stages of the Verilog
constructs used.

STAGE-1 [UNPACK OPERANDS
51 52 = = |
e | s M1 M2
ot o
STAGE-1 XoR SUBITRACT
P S L.
wonpisy B2
1)
ADDER
.......................... | AU RS N
ot ‘ E Mi M
. |
STAGE-3 e i y 1
SRS IS e FIXED-POINT
DIVIDER
5_OUT E OUT T
I = M_OUT
_____ oo I £,
STAGE-4 B Ikx:-mxn:r ADJUST] | NORMALIZER
5 OUT | eout M_OUT

_______ S P

| E_OUT

...

Fig. 5. Pipeline stages of floating point Divider

Stages 1, 4, 5 and 6 are done same like adder.

Stage 2: Calculate the exponent and sign

The exponents of operand A and operand B are
subtracted and the result is added to the bias, 1023 for
double-precision number. The sign bits of the two
operands are XOR'ed. The resultant sign and exponent
is passed through all stages.

Stage 3: Divide Mantissa

The mantissa fields of operand A and operand B are
divided. The integer divider studied used the SRT Radix-
2 algorithm. The exponent and sign bits are stored in
delay registers.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

FPU performance is assessed by considering each
componentin turn that is, the floating point adder, floating
point multiplier and the floating point divider. The
objective was to determine the efficient FPU with the
optimal number of pipeline stages that produces results

46 National Journal on Electronic Sciences and Systems, Vol.1, No.1, March 2010

every clock cycle. The design was targeted on a Xilinx
VIRTEX FPGA XCV1000.The number of CLB slices
available on the XCV1000 is 12,288 and hence the
device utilization is specified as percent of the total
number of slices present. This section describes all the
experiments that were performed and their results. From
these results, significant conclusions are made about the
performance of the data. There are three different
floating point units-adder, multiplier and the divider each
of which has different fixed-point unit to perform addition,
multiplication and division respectively. Each unit is
pipelined to give maximum performance. Random binary
test vectors were generated of length 64-bit, and were
used to verify the output of each FP core element. The
vectors used for testing were pre-selected such that it
included all exceptions. The floating-point numbers
included zero, maximum/minimum positive and negative
numbers. Special values include positive and negative
infinity and Not a Number. The output of the FP core
elements are of IEEE-754 format. Appropriate flags are
set for the special values and on an occurrence of
overflow/underflow. The simulation results were verified
both after the behavioral design and the structural
design. The results for each fixed-point unit algorithms
were also verified with the standard simulator.

Floating-Point Adder

A Floating point (FP) adder is used to subtract two
IEEE-754 double precision numbers. FP adder is
analyzed for various configurations, each differing only
by the fixed point adder used. Thus the primary focus is
on the performance of the fixed-point adders. Obviously,
the highest performance fixed-point adder results in the
fastest FP adder. The fixed point adders considered in
this study are:

1. Ripple CarryAdder (RCA)

2. Carry LookAheadAdder (CLA)

3. Carry SelectAdder (CSA)

4. Block Carry Look Ahead Adder (BCLA)

Analysis of FP adder

The section analyses the performance of the FP
adder for each of the fixed-point adders considered. The
Table-l below shows the area timing results of the FP
adder after place and route on VIRTEX FPGA. After
analyzing the resultsin Table I, itis concluded that floating
point adder using RCA occupies the maximum area and
is the slowest and occupies the maximum area. The FP
adder using CLA, CSAand BCLA run at the same speed
of 9.1 MHz and take the same time to produce a result,
but of the three, the one using BCLA as the fixed-point

adder has the advantage of occupying the minimum area
compared to CLA and CSA. Thus based on the
performance, FP adder using BCLA as the fixed point
adder has the highest performance and minimum area.

Table 1. Summary of FP Adder Performance
for each Fixed-Point Adder

Total Area
FPA 1‘:2 e:: ¥ No. of glt::ct: Frequency
(fixed-point | "> | %of | Slices Lg'n | Of FPA
adder used) :t: es) | Slices | (outof | 5 ngs} (in Mhz)
9 12,288)
FPA (RCA) 4 71 867 1494 6.7
FPA (CLA) 6 6.2 764 1104 9.1
FPA (CSA) 6 6.4 787 1104 9.1
FPA (BCLA) 6 | 61 750 1104 | 941

B.Floating-Point Multiplier

Floating-Point multiplier is to multiply two |EEE-754
double precision numbers. Architectures used for fixed-
point multipliers are

Shift Add multiplier (SAM)

Note that the FP adder using CLA, CSA and BCLA
have the same speed of 9.1 MHz and latency of 6 cycles.
If a FP multiplier is used with non-pipelined fixed point
multiplication stage then B-2 gives the best performance
whereas if the pipelined fixed point multiplier is used, then
FP multiplier using any of the fixed-point algorithms which
executes at a speed of 13.3 MHz but if it were to be traded
off with area, then shift-add multiplier gives the best
performance with a high latency (of 56 cycles). The FP
divider, it executes at a speed of 1.3 MHz with a latency of
6 cycles.

The divider is the slowest of all and makes an impact
only if the deal is with small matrices. In this paper large
matrices of size unto 300300 are dealt, where the
occurrence of a divide operationis rare. Here the speed of
the multiply-add unit dominates the speed of the FPU.
The FPU can produce a maximum of unto two results per
clock cycle depending on the size of the matrix, due to the
pipelined structure.

1. Shift Add Multiplier (SAM)
2. Booth-2 multiplier (B-2M)
3. Booth-3 multiplier (B-3M)

The FP multipliers which are studied here differ only in
the fixed point multiplier used in its implementation.
Hence focus is on the performance of the fixed point
multipliers. The fixed point multipliers can be non-
pipelined, fully pipelined or partially pipelined.

Renukadevi et al: Quantitative Analysis of 64-bit Floating Point Arithmetic... 47

Analysis of FP multiplier

The Table 2. presents the summary of results for FP
multiplier with pipelined fixed point multiplier units. FP
multiplier using SA, B-2 and B-3 execute at the same
frequency of 13.292 MHz as the normalization of the
mantissa stage dominates the speed of the unit. Studying
the other performance parameters being area and
latency, it is to be noted that SA has the minimum area but
maximum latency of 57 cycles whereas B-2 has more
area compared to SA but produces result every 32 cycle
whereas B-3 occupies the maximum area. Based on the
results, FP multiplier using B-2 as the fixed point multiplier
has the best performance.

Table 2. Summary of FF Adder Performance
for each non-pipelined Fixed-Point Multiplier

Total Area of FPM |

FEM Latency S5 Clock | quency
e (No.of 5 Cycle
(multiplier i %of | Slices of FPA
pipeline Length 5
used) stages) Slices | (outof (Inns) (in Mhz)
12,288) |
FPM(SA) 3 41.3 5081 420.9 24
FPM(B-2) 3 393 4728 306.8 33
FPM(B-3} | 3 381 4678 | 4745 2.1
Floating-Point Divider

FP divider is used to divide two IEEE-754 64-bit
numbers. The only algorithm considered for the fixed
point divider part of the FP divider is the SRT algorithm
(Radix-2). Thus a single (SRT) non-pipelined divider
meeting the requirement of the FPU was investigated.

Analysis of FP divide

Only one fixed point algorithm for the divider, namely
the SRT algorithm (radix-2) has been investigated.
Depending on the fixed point unit the FP divider executes
at a speed of 1.3 MHz and occupies an area of 65.1 % of
total single-chip slices available. The performance of the
FP diveris shown belowin Table 3.

V. CONCLUSION

Note that the FP adder using CLA, CSA and BCLA
have the same speed of 9.1 MHz and latency of 6 cycles.
If a FP multiplier is used with non-pipelined fixed point
multiplication stage then B-2 gives the best performance
whereas if the pipelined fixed point multiplier is used, then
FP multiplier using any of the fixed-point algorithms which
executes at a speed of 13.3 MHz but if it were to be traded
off with area, then shift-add multiplier gives the best
performance with a high latency (of 56 cycles). The FP
divider, it executes at a speed of 1.3 MHz with a latency of
6 cycles.

Table 3. Performance of FP Divider
using SRT Fixed-Point Divider

Device Utilization Design Statistics
st Pipeline St Moy | Mn | Max
age ipeline Stages %of | Slices Period Freq.

Slices 1“.:.“2‘;:} inns) | (inMhz)

Stage 1 | Lalch data 0.6 74 233 428
Stage 2 | Exponent_Sign 0.5 67 292 342
Stage 3 | Divider 60.6 7448 7187 13
Stage 4 | Mantissa(SRT) 25 303 581 17.2
Stage 5 | Normalize Mantissa 0.5 67 521 19.2
Stage 6 | Write Result 04 43 | 233 429

The divider is the slowest of all and makes an impact
only if the deal is with small matrices. In this paper large
matrices of size unto 300300 are dealt, where the
occurrence of a divide operation is rare. Here the speed
of the multiply-add unit dominates the speed of the FPU.
The FPU can produce a maximum of unto two results per
clock cycle depending on the size of the matrix, due to the
pipelined structure.

REFERENCES

[11 Heshan A1-Twaijry and Michael J. Flynn,1995,
“Performance/area tradeoffs in booth multipliers
Technical report”, Stanford University.

[[2] PL.Brown, W.S. Richman, 1969, “The choice of
base”, Communications of the ACM, Vol 12, No.
10.

[3] Xilinx Datasheet, 2001, “Virtex 2.5v field
programmable gate arrays”. Technical report,
Xilinx Inc., April.

[4] Stuart F, Oberman David L, Harris and Mark A.
Horowitz, 1997, “Srt division architectures and
implementations”. In Proceeding of the 13th IEEE
Symposium on Computer Arithmetic.

[6] Stuart F.Oberman and Michael J.Flynn, 1997,
“Division algorithms and implementations”. IEEE
Transactions on Computers, VOL4, No. 8.

[6] Chen-Ying Hsu, 1998, “Variable precision
arithmetic processor in fpgas”, Thesis,
University of Toronto.

[7] Kai Hwang, 1979, “Computer Arithmetic-
Principles, Architecture, and Design”. John Wiley
and Sons.

[8] J.AHidalgo, V.Moreno-Vergara, O.Oballe, A,
Daza, M.J.Martin-Vazuez, and A.Gago, 1998, “ A
radix-8 multiplier unit design for specific purpose”,

48

[9]

[10]

[11]

[12]

[13]

[14]

[15]

National Journal on Electronic Sciences and Systems, Vol.1, No.1, March 2010

In Xl Conference of Design of Circuits and
Integrated Systems (DCIS'98) Madrid. Dept. de
Electronic, E.T.S.I. Industrials.

J.Kahan, W.Palmer, 1979, “On a proposed
floating-point standard. Technical report”.
SIGNUM Newsletter, Special Issue.

Weng Fook Lee, 2000, “VHDL-Coding and Logic
Synthesis with SYNOPSYS”. Academic Press,

Allison L. Walters, 1998, “A scaleable fir filter
implementation using 32-bit floating point complex
arithmetic on a FPGA based custom computing
platform”. Master's thesis, Virginia Polytechnic
Institute and State University.

Al Walters Nabeel Shirazes and Peter
Athena's,1995, “Quantitative analysis of floating
point arithmetic on FPGA based custom
computing machines”. In presented at the 5th
International Workshop on Field Programmable
Logic and Applications. Virginia Polytechnic
Institute and State University.

New York NY, 1985, “IEEE Standard for Binary
Floating-Pont Arithmetic’, Institute of Electrical
and Electronics Engineers, ANSI/IEEE STD 754.

Stuart F. Oberman and Michael J.Flynn, 1995,
“Implementing division and other floating-point
operations A system perspective”. In proceedings
of SCAN-95, International Symposium on
Scientific Computing, Computer Arithmetic, and
Validated Numeric.

Stuart F. Oberman and Michael J.Flynn, 1997,
‘Design issues in division and other flatting-
point operations”. IEEE Transactions on
Computers.

[16] Stuart Franklin Oberman, 1996, “ Design Issues in
High Performance Floating Point Arithmetic Units”.
PhD thesis, Stanford University.

[17] Jan Ogrodzki, 1994, Circuit Simulation Methods
andAlgorithms. CRC Press.

[18] Akber Syed, 2002, “A hardware interpreter for
sparse matrix Lu factorization”. Master's thesis,
University of Cincinnati.

[19] Sanjeev Thiyagarajan, 2001, “Reducing memory
space for completely unrolled Lu factorization of
sparse matrces”, Master's thesis, university of
Cincinnati.

[20] Gary W.Bewick, 1994, Fast Multiplication
algorithms and implementation .PhD thesis,
Stanford University.

[21] Hong Zhang, 1998, “An evolution of complete loop
unrolling technique for solving sparse linear
system of equations using direct methods”,
Master's thesis, University of Cincinnati.

Renuka Devi.S graduated from
Meenakshi College for Women, Chennai
during the year 1997 in Mathematics.
She obtained her Master's degree during
.| the year 1999 from Annamalai University,
Chidambaram. She is doing her research
work in the field of Computational
Mathematics. Currently she is the Assistant Professor, in
the Department of Science and Humanities, of Sri
Ramanujar Engineering College, Chennai-600 048. She
has published about nine papers to her credit in National
and International Conferences.

